Spatial and temporal trends of metals and arsenic in German freshwater compartments

2014, Fachzeitschriften

Fliedner, Annette; Rüdel, Heinz; Knopf, Burkhard; Weinfurtner, Karlheinz; Paulus, Martin; Ricking, Mathias; Koschorreck, Jan
Environ Sci Pollut Res (2014), online 10.Januar 2014

Abstract

Cadmium, lead, mercury, copper, nickel, zinc, and arsenic were analyzed in suspended particulate matter (SPM), zebra mussels, and bream sampled yearly under the program of the German Environmental Specimen Bank (ESB) in the rivers Rhine, Elbe, Danube, Saar, Mulde, and Saale and in Lake Belau. Temporal and spatial trends were analyzed, correlations between metal levels in different specimen types assessed, and sampling sites ranked according to their metal levels by calculating a Multi-Metal Index (MMI) for every specimen type and site. SPM: Highest metal loads were detected in Mulde, Saale, and Elbe right downstream of the Saale confluence. In the Elbe, metal loads in SPM were mostly highest in the upper and middle section of the river while in Rhine and Saar concentrations increased downstream. Temporal trends since 2005 were detected only at three sites. Zebra mussel: MMIs were highest in the tidal section of the Elbe and the lower Rhine and lowest in Lake Belau and the upper Danube. Different temporal trends were detected since the early 1990s depending on site and metal. Bream: As, Pb, Cu, and Hg were analyzed in muscle tissue and Pb, Cd, Cu, and Zn in liver. For both tissues, MMIs were highest in Mulde and Saale and the lower and middle Elbe. Since the early 1990s, Hg, Pb, and Cu decreased in bream muscle at many sites while As increased at 6 of the 17 sites. The findings indicate that Hg, Pb, and Cu have obviously decreased in many freshwater ecosystems in recent years, whereas As and Ni levels have increased at several sites. Metal levels and temporal trends mostly differed between the specimen types under investigation and only few correlations between specimen types were detected. This underlines the importance of including different components of an ecosystem when assessing its environmental quality.

doi:10.1007/s11356-013-2487-y